LATWAK: IMPACT TEST TO OBTAIN PILE LATERAL STATIC STIFFNESS
By Jean-Louis Briaud,' Fellow, ASCE, and Marc Ballouz,” Member, ASCE

ABSTRACT: The LATWAK test consists of hitting in the horizontal direction the side of a pile on which a
horizontal velocity transducer is attached. The blow is delivered with a sledge hammer equipped with a dynamic
force transducer. The force time signal from the hammer (input) and the velocity time signal from the pile
(output) are recorded during the impact. The experimental mobility curve is obtained as a function of frequency
by calculating the modulus of the complex valued ratio of velocity over force using Discrete Fourier Transforms.
Theoretically it is assumed that the pile is an elastic member with mass and that the soil can be represented by
linear springs and viscous damping. The problem of the steady state forced vibration of the pile in such a soil
is solved mathematically. It leads to the theoretical mobility curve for the pile-soil system. The experimental
mobility curve obtained in the LATWAK test on the pile is matched with the theoretical mobility curve. A
system identification technique is used to match the two curves and to extract the best-fit model parameters,
which include the static lateral stiffness K for the pile-soil assembly. To evaluate the usefulness of the method,
the lateral stiffness K, predicted by the LATWAK test on a pile was compared to the lateral stiffness K., measured
in a static lateral load test on the same pile. A total of 20 pile load tests and 20 LATWAK tests were performed
and used to compare K, and K,,. The results are encouraging.

IDEA setup and test. The sledge hammer weighs about 150 N, and

is equipped with a dynamic load cell and a soft rubber tip.

The idea of the LATWAK test comes from different sources.
It comes in part from the development of the WAK test by
Briaud and Lepert (1990). The WAK test or Wave Activated
Stiffness (K) test is an impact test to obtain the static stiffness
of a spread footing by hitting it with a sledge hammer in the

The soft rubber tip softens the blow, concentrating the impact
energy of the hammer in the low frequency range; this is de-
sirable to be closer to the static phenomenon and to minimize
the rate effects. The horizontal impact usually generates be-
tween 15 and 50 kN of peak dynamic force. A geophone is

vertical direction while recording the force-time signal from
the hammer dynamic load cell (input) and the velocity-time
signal from the geophones on the spread footing (output). The
LATWAK test comes also from the Nondestructive Techniques
(NDT) developed to obtain the axial stiffness of a pile and the
influence of defects on that stiffness (Paquet 1968). The idea
also finds its basis and background in the work of several-
leading researchers in soil dynamics. This includes the work
of Novak (1974), Roesset (1980), and Nogami (1988) among
others.

While a defect which would reduce the effective diameter
of a drilled shaft is definitely undesirable, the axial stiffness
is likely to be less affected than the lateral stiffness. Indeed,
the axial stiffness is influenced by the square of the diameter
(area) while the lateral stiffness is influenced by the fourth
power of the diameter (moment of inertia). Therefore the be-
havior in the lateral direction may be critical. The LATWAK
test or Lateral Wave Activated Stiffness (K) test was devel-
oped to obtain the lateral static stiffness of a pile in place. This
LATWAK stiffness is measured at the small strain level gen-
erated by the sledge hammer impact. The stiffness K is defined
here as the ratio of the lateral load applied in a static lateral
load test over the corresponding lateral displacement; K is in
MN/m, for example.

placed on the pile vertical face on the opposite side of the
point of impact in order to record the horizontal velocity of
the pile head during and after the horizontal impact. The peak
velocities typically range from 0.02 m/s to 0.2 m/s and the
velocity signal damps out after a time generally varying be-
tween 0.1 to 0.5 s. An example of the signals collected during
a LATWAK test is shown in Fig. 2.
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The LATWAK test method consists of hitting a pile hori-
zontally with a sledge hammer, measuring the force-time im-
pulse of the hammer, measuring the horizontal velocity of the
pile and analyzing their interaction. Fig. 1 shows a typical
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FIG. 1. LATWAK Test
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FIG. 2. Force-Time and Velocity-Time Records

THEORETICAL FRAMEWORK

The prablem of flexural wave propagation in piles is not a
simple matter and one which is much more complicated than
the axial stress wave propagation problem. Continuum models,
finite element models and discrete models have been used to
simulate this soil-pile dynamic interaction. With the continuum
models, the soil mass is represented as a continuum with linear
elastic or visco elastic properties (Tajimi 1969; Novak 1974,
Novak and Nogami 1977). The finite element models offer
great flexibility in representing complex geometries and vari-
ations in soil properties (Novak 1977; Kuhlemeyer 1979;
Dobry et al. 1981). With the discrete models, the soil-pile sys-
tem is represented by a set of discrete masses, springs and
dashpots (Agarwal 1973; Prakash and Chandrasekaran 1973).
The following derivation is a variation of the discrete model
method. Here, reference is made to Ballouz and Briaud (1993)
for the details of the theory because the writers know that all
the details of the derivation can be found in it.

The soil is modeled as a set of springs and dashpots (Fig.
3); the spring constant k is constant with depth z and with
deflection y, and so is the viscous constant c. The spring con-
stant k per unit length of pile is defined as the ratio of the
static lateral force P; per unit length of pile at a depth z divided
by the lateral displacement y at the same depth (k = P,/y). The
units of k are N/m* for example. The viscous constant c is
defined as the ratio of the viscous lateral force P, per unit
length of pile at a depth z over the lateral velocity 3y/dt at the
same depth [c = P,/(8y/5¢)]. The units of ¢ are N-s/m’ for
example. :

The pile is modeled as an elastic member with a mass m
per unit length of pile (kg/m, for example) and a bending
stiffness EI, m and EI are constant with depth z and deflection
y. The bending stiffness E/ is defined as the ratio of the bend-
ing moment M existing at a depth z over the pile curvature
8%y/5x* at the same depth; EI is in N-m? for examgle. The
lateral inertia force per unit length of pile is Py = md%*y/dt%.

The boundary conditions are that the pile has a length L, an
embedded length also equal to L (no stick-up), that the shear
and moment at the pile tip are zero at all times, that the mo-
ment at the pile top is zero at all times and that the shear at
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FIG. 3. Theoretical Model

the pile top is the forcing function F(#). This forcing funs
is represented by the impact force signal from the hamm

the pile during the LATWAK test. Instead of solving this

sient problem, the much simpler steady state vibration pro

is solved where F(#) is equal to Fye'” with o being the an

frequency. The reason for doing so is as follows.

The mobility is defined here as the modulus of the ra#
the frequency domain of the response velocity u(¢) at th
cation of the applied force over the applied force F().
word modulus is used here in the sense of the modulus
complex number. Indeed, as will be shown later, the ratia
over F(#) is a complex number. The mobility at the pile
is given by the curve |v/F| versus w. For linear systems
as the soil-pile system described above, the mobility is a
erty of the system and is independent of the applied force
This principle is well explained in Ewins (1986). In a wa
mobility of a system in dynamics can be compared
stiffness of a system in statics; for linear systems the §
stiffness is independent of the applied force. This impa
principle in dynamics is used to obtain the unique theord
mobility curve of linear systems by solving the problen
the simplest forcing function: the steady state vibration 4
Foe'*. This unique theoretical mobility curve can th
matched with the experimental mobility curve even thoug
experimental mobility is obtained from an impact force,
steady state force. The assumption that, at the small
involved in the impact, the soil-pile system behaves li
is the basis and the limitation of the theory.

OBTAINING THEORETICAL MOBILITY CURVE

The governing differential equation for the dynamic be
of the pile on Fig. 3 is (Ballouz and Briaud 1993)

4. 2
6y+m§_y+

EI —=
az' ar?
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_+ _0
Cat ky =

This equation is obtained by making use of three fundam



equations: the constitutive equation for the soil, the constitu-
tive equation for the pile, and the dynamic equilibrium of the
pile element. The boundary conditions are, for any time #

63
at z = 0 (pile tip), a—; ‘ = 0 because the shear force is zero
T lz=0
d%y .
- = 0 because the moment is zero
9z | =0
3.
at z = L (pile top), EI Q%’_ = —Fye iwt because the shear
97 | force is equal to F(f)
oy ,
02| ., = 0 because the moment is zero

Knowing that the forcing function F(¢) is harmonic in time,
and that, by assumption, the coefficients of the governing dif-
ferential equations are constant, then the solution to (1) can
be obtained by taking solutions of the form

¥ 1) = 0 @

where 6 = displacement amplitude defining the envelope of
pile movement, both with time and with depth (Fig. 4); © =
angular frequency; and K = complex wave number.

The complete derivation of the solution is in Ballouz and
Briaud (1993). The solution of (1) with the boundary condi-
tions listed is

- iwt
¥z, t) = E?IIjTO:A {[sin(cL) — sinh(cL)][cosh(cz) + cos(cz)]
+ [cosh((;'L) — cos(oL)] [sinh(cz) + sin(oz)]} 3)
where
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FIG. 4. Deflected Shape of Pile

o eiou . .

EIo°A [sin(cL)cosh(oL) — sinh(ocL)cos(cL)] (4)

The velocity at the pile head can be obtained by taking the
derivative of (3) and evaluating it at (z = L)

yrL, 1) =

@z, 1)

v, t) = ot

()

z=L

The forcing function F(¢) at the ground surface is a complex
function (F(f) = Foe™'); the velocity function v(L, f) at the
ground surface is also a complex function because y(L, ?) is.
Therefore the ratio v(L, #)) over F(r) is a complex number.
The mobility function at the ground surface is the modulus of
the complex valued ratio of velocity over force

vz, ) —w((Re5 + Re6)* + (Im5 + Im6)")'” ©
F@) | " |2EI¥((1 — aa — bb)* + (ab — ba)®)'®
where

Re5 = Rel -Re2 —Im1 - Im2
Im5 = Rel -Im2 + Iml-Re2
Re6 = Re3-Red —Im3-Im4
Im6 = Re3-Im4 + Im3-Red
Rel = sin(La cos B)- cosh(La sin B) — sinh(La cos B)- cos(La sin B)
Re2 = cosh(za cos B)- cos(za sin B) + cos(za cos B)- cosh(za sin B)
Re3 = cosh(La cos B)cos(La sin B) — cos(La cos B)- cosh(La sin B)
Re4 = sin(za cos B) - cosh(za sin B) + sinh(za cos ) cos(za sin B)
fml = cos(La cos B)-sinh(La sin B) — cosh(La cos B)-sin(La sin B)
Im2 = sinh(zoe cos B)-sin(za sin B) — sin(zo cos B) - cos(z o sin B)
Im3 = sinh(La cos B)-sin(La sin B) + sin(La cos B)-sinh(La sin B)
Im4 = cos(za cos B)-sinh(za sin B) + cosh(za cos B)- sin(za sin B)
a = cosh(La cos B)-cos(La sin B)
b = sinh(Lo cos B)-sin(La sin B)
a = cos(La cos B)-cosh(La sin B)

b = sin(Lo cos B) - sinh(La sin B)
(=5 - @]
= \T= El
1 [ -co T
B=gtn (mm’— k) T3
The theortetical mobility function (6) is independent of time
but is a function of the frequency w. The LATWAK computer
program was written to give, among many other things, a
graphical display of the mobility function and of the pile de-
flection as a function of depth and time for the case of the

steady state vibration. An example of pile deflection is shown
in Fig. 4.

OBTAINING EXPERIMENTAL MOBILITY CURVE

The experimental mobililty curve is obtained by performing
a LATWAK test in the field on the pile to be analyzed. The
data gathered in a LATWAK test is in the time domain as in
Fig. 2; it consists of the lateral force-time signal as given by
the hammer tip load cell and the lateral velocity-time signal
as given by the horizontal geophone glued to the pile. Such
data is collected for each blow. The average signal for five
blows is used in order to reduce the random noise which may
exist in each blow.
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The experimental mobility curve is conveniently obtained
by the Discrete Fourier Transform technique (Bendat and Pier-
sol 1986; Clough and Penzien 1993; Ballouz and Briaud
1993). Fourier showed in 1822 (Bringham 1974) that any
function can be described as a superposition of sine and cosine
functions of varying frequency. This mathematical technique
is used to extract the frequency content of any function which
exists in the time domain. For the function F(f) and v(?) in
the time domain the following transformation gives the cor-
responding complex functions F,, and v, in the frequency
domain

n—1 n—1
j . . i
F, = At [; F, cos (-—217 ;) + i ; Fy sin <—27r ;)]
forl=0,1,2--,n—1 )
and
n—1 Ii n—-1 Ii
Uy, = At [2 Uy COS (—211' l) +i 2 vy sin (—-211' l)]
= n = n
forl=0,1,2---,n—1 (8)

where At = time elapsed between two consecutive readings
by data acquisition system (say one-thousandth of second);
n = number of data points collected during one blow in the
LATWAK test (say 1,000); j = counter that gives time jAz in
time domain signals; F, and v; = values of F(¢) and v(?) in
time domain for the jth time increment in the signals (values
at jAt); I = counter that gives value of w, = 2mw(l/n) X 1/At;
i = imaginary number (\/—1); and F,, and v,, = values of F,,
and v, in frequency domain for value of ® equal to w;. There-
fore the modulus of the complex valued ratio v(f) over F(?) is
given by

v(z, &)
F@®

«y

(B (] (St
S (=] ()

for!l=0,1,2--,n—1 ©)
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The experimental mobility function is given in (9) and is cal-
culated numerically in a discrete fashion by using the time
domain data.

MATCHING EXPERIMENTAL AND THEORETICAL
MOBILITY TO GET k

The stiffness & is obtained by matching the experimental
mobility curve (9) and the theoretical mobility curve (6). Note
that the experimental curve is obtained from an impact test
while the theoretical curve is obtained from solving the prob-
lem of a steady state test. The uniqueness principle (Ewins
1986) states that for a linear system the mobility curve is
unique and independent of the loading mode. It is assumed
that, at the small strains involved in the LATWAK test, the
soil-pile system in the experiment and in the theory is linear.
Therefore the experimental mobility curve is the same as the
theoretical curve even though they are obtained as responses
to different loading modes and the matching process is valid.

The theoretical mobility curve depends on three variables:
the stiffness of the soil spring k, the vibrating mass of pile
plus soil m, and the damping coefficient of the system c. Those
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three variables are defined per unit length of pile. Trial and
error to optimize the fit between the two curves would be time
consuming and inefficient. Instead the system identification
technique (Ljung 1987; Stubbs et al. 1994; and Glaser 1995)
was used as follows. If |/ F1* is the experimental curve (Fig.
5) and |vFIT™ is the theoretical curve, the vertical distance
between the two curves at a frequency @ and for an initial
guess my, ko, Co is '

* my, kg c)

v

F

v

F

v

F

9 (10)

] @

This can also be calculated as

v v v (mokyco)
. om /s " ok /e oc /a ¢
(11

The matching process consists of matching the two curves at
n points until an acceptable precision is reached. In the present
study it was found that matching the two curves at seven
points, until the relative differences for all parameters dm/m,
dk/k,, and dcl/c, were less than 2% consistently gave a good
fit. For each of the seven points chosen, (11) is written. This
leads to the following matrix equation

zZ = ¢ - &
AXD=(Tx3) GX1) 2

v

F

where Z = matrix of the d|v|/|F|s; ¥ = matrix of

mg kg Co
(a E )
F w
am /s

and £ = matrix of (dm, 9k, dc). The matrix Z is known from
(10); matrix ¥ is known because the seven chosen frequencies
@®; are known as well as the initial guesses my, ko, ¢p. The
unknowns in (12) are dm, 0k, dc (matrix &) and the solution
is

E o= W Wt W -z
B3X1) @BXT7 TX3) @BX7H OX1D

Note that (12) represents seven equations with three unknowns
(dm, 9k, dc), which are unlikely to satisfy all seven equations
exactly. Eq. (13) is the mathematical expression of the least
square method that allows optimization of the values of the 3
variables dm, dk, dc to best satisfy the seven equations in (12)
(Ljung 1987; Stubbs et al. 1994). Once the £ matrix is ob-
tained, the parameter values can be updated.

new m=m, + om

new k =k, + ok

new ¢ =¢, + ac
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Eq. (13) is reentered with the updated values of m, k, and
c. This leads to new adjustments am, 9k, dc. This process (Fig.
6) is repeated until the precision criterion of 2% is reached;
that is to say, when the change in parameters is less than 2%.
An example of curve matching is shown in Fig. 5.

The seven points used in the matching of the two curves
are selected by the user of the program. The number 7 was
obtained by trial and error as a compromise between the good-
ness of fit for the experimental and theoretical curves and the
complexity of the calculations. Usually a couple of points are
chosen close to the peak, two before and three after. Once the
matching process has satisfied the 2% criterion, the user can
view the two curves and accept the matching results or try a
new set of seven points. Note that the final values of m, &,
and c¢ are not sensitive to the initial guesses for those param-
eters but the number of iterations to converge towards the 2%
criterion is: the better the initial guesses, the shorter the con-
vergence.

OBTAINING STATIC STIFFNESS K

The goal of the LATWAK test is to obtain the global lateral
static stiffness K of the pile-soil system. This global stiffness
K is the one that would be obtained at small deflections (say-
less than 1 mm) in a static lateral load test; it is the ratio of
the lateral load over the lateral displacement. This global stiff-
ness K is different from the soil spring stiffness k of the in-
dividual soil springs along the piles in the elementary model.

K = Frlyr (14)
while
k=Ply as)

where Fr = horizontal load applied at pile top (kN); yr = hor-
izontal displacement at pile top (m); P = horizontal soil resis-
tance per unit length of pile at depth z and deflection y (kN/
m); and y = horizontal deflection of pile under P at depth z
(m).

The solution to the static horizontal loading of a pile is a
particular case of the dynamic problem solved earlier. The
governing differential equation (1) becomes

'y
— + —
El— +ky=0 (16)

because the damping and inertia terms are negligible in this
case. The solution (Hetenyi 1946; Ballouz and Briaud 1993)
reduces to

@) = 5&%@ [e™ (P cos(oz) + R sin(0z))

+ €”((2R + P)cos(oz) + R sin(0z))] an

where

k
= 4. = gi . ploL
o= 25’ R = sin(cL)(1 — &%)

P = cos(oL) + 2e¥%sin(oL) — €*" cos(oL)
0 = 2¢™ + 4¢™ sin*(gL) — &0 — e™*

Eq. (17) gives the deflection y at any depth z of a pile which
has a depth of embedment L, a bending stiffness EI and is
loaded horizontally with a static force Fr applied at the ground
surface in a soil with a soil spring stiffness k. In particular the
pile deflection at the ground surface yr is

_ Fr(e™™ + 4¢™ sin(gL)cos(oL) — eh
yr= 2EIc°Q

The lateral static stiffness K is therefore given by

(18)

K= Fr_ k 2% + 4¢% sin*(gl) — &7 — &= )
= r T 20 e + 4¢° sin(oL)cos(oL) — €*°F

Use (19) to calculate the global stiffness K once the soil spring
stiffness k has been determined through the mobility curve
matching process. The global stiffness X is the static stiffness
predicted by the LATWAK test and is called X,. It is to be
compared to the global stiffness K,, measured in static lateral
load tests to assess the potential of the LATWAK method.

A note of interest is that (16) is usually solved for two
extreme cases: flexible pile (L = %) and rigid pile (y = Rz +
S). The application of these solutions is restricted to the con-
ditions L > 30! for flexible piles and L < o~ for rigid piles
(Briaud 1992). In (18) the general solution for a pile of length
L is given and can be used to evaluate the two conditions.

COMPARING K (LATWAK) WITH K (LOAD TEST)

A total of 20 lateral pile load tests were performed in con-
junction with 20 LATWAK tests. The tests took place at three
sites: Edmonton (Alberta, Canada), New Orleans, and Texas
A&M University. There were eight driven piles in Edmonton,
eight driven piles in New Orleans, and four bored piles at
Texas A&M University. The characteristics of the piles are
given in Table 1.

The soil in Edmonton consists of 5 m of compacted clayey
fill, 3 m of fine silty sand, 12 m of soft clay, 1 m of glacial
till and then dense silty sand. Detailed soil properties can be
found in Briaud et al. (1994). The soil in New Orleans consists
of 2 m of loose sand fill underlain by soft clay with intermit-
tent layers of silty sand. Detailed soil properties can be found
in Briaud et al. (1994). The two Texas A&M University sites
are among the five National Geotechnical Experimentation
Sites (NGES) sponsored by the Federal Highway Administra-
tion (FHWA) and the National Science Foundation (NSF). The
soil at the clay site is a stiff clay, while the soil at the sand
site is a medium dense sand. Detailed soil properties can be
found in Briaud (1993) and Marcontell and Briaud (1994).

The lateral load tests were performed by applying the hor-
izontal load in small increments and holding each-load for 15
min while taking readings of displacements. The 15 min read-
ings were used to generate the load-displacement curve. The
measured stiffness value K,, was obtained from that curve by
plotting the secant stiffness as a function of displacement and
by extrapolating linearly to zero displacement the first two
points on the curve (Fig. 7). Therefore K,, is an initial tangent
stiffness obtained from the static load tests by extrapolation
from data points corresponding to deflections of the order of
1 to 3 mm. The LATWAK tests were performed before the
load tests. A typical case of LATWAK force-time and velocity-
time results is shown in Fig. 2. Fig. 5 shows the corresponding
results of the mobility curve matching process while Fig. 7
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TABLE 1. Pile Characteristics
Embedded Pile Moment of |Plle diameter
Pile Pile length modulus inertia or width  |Wall thickness
number Site identification Pile type (m) (N/m?) (m*% (m) (m)
(1 (2 (3 “ (5 (6 (7) (8) 9)
1 Edmonton C1 Steel pipe filled with concrete 24 2.7 E10 184 E-5 0.324 9.5 E-3
2 Edmonton c2 Steel pipe filled with concrete 24 2.7 E10 142 E-5 0.324 9.5 E-3
3 Edmonton C3 Steel pipe filled with concrete 24 2.7 E10 184 E-5 0.324 9.5 E-3
4 Edmonton U4 Steel pipe filled with concrete 24 2.7 E10 142 E-5 0.324 9.5 E-3
5 Edmonton R1 Steel pipe filled with concrete 24 2.7 E10 120 E4 0.61 9.5E-3
6 Edmonton R2 Steel pipe filled with concrete 24 2.7 E10 120 E4 0.61 9.5 E-3
7 Edmonton R3 Steel pipe filled with concrete 24 2.7 E10 120 E-4 0.61 9.5 E-3
8 Edmonton R4 Steel pipe filled with concrete 24 2.7 E10 120 E-4 0.61 9.5 E-3
9 New Orleans TPU Timber 21 1.4 E10 7.88 E-4 0.43 top . —
0.28 bottom
10 New Orleans CPU Square concrete 21 2.7 E10 133 E-3 0.356 —
11 New Orlenas CPl1 Square concrete 21 2.7 E10 133 E3 0.356 —
12 New Orleans CPM Square concrete 21 2.7 E10 133 E-3 0.356 —
13 " New Orleans NWR  [Steel pipe hollow 21 2.0 E11 8.15 E-5 041 6.35 E-3
14 New Orleans SER Steel pipe hollow 21 2.0 El1 8.15 E-5 0.41 6.35 E-3
15 New Orleans SPU Steel pipe hollow 21 2.0 E11 6.38 E-5 0.324 1E-2
16 New Orleans SP3 Steel pipe hollow 21 2.0 El11 6.38 E-5 0.324 1E-2
17 Texas A&M SS3 Bored concrete 15.5 3.0 E10 343 E-2 091 —
18 Texas A&M SSs4 Bored concrete 11 2.7 E10 5.68 E-2 1.03 —
19 Texas A&M CC6 Bored concrete 232 3.0 E10 343 E-2 0.91 —
20 Texas A&M CC7 Bored concrete 10 2.7 E10 343 E-2 091 —

shows the results of the lateral load test and of the comparison
for the same pile. The predicted stiffness K, obtained from
LATWAK corresponds to lateral pile displacements of the or-
der of 0.5 to 0.05 mm. These values are maximum lateral
movements of the pile during LATWAK and were obtained by
integration of the velocity signal.

The comparison between the lateral static stiffness K, pre-
dicted by the LATWAK test and the lateral static stiffness K,
measured in the lateral load test at small displacements is
shown in Fig. 8 for the 20 piles tested. It must be pointed out
that while these were not class A predictions, the prediction
of K by the LATWAK test and the LATWAK program is an
automated process including the matching search for the mo-
bility curve; indeed, there is no point in the process where the
data can be adjusted in order to better match the known results
from the lateral load tests.

It is interesting to note that the measured K, values varied
from 10 MN/m to 500 MN/m with the 0.30 m diameter piles
having K,, values between 10 and 30 MN/m, the 0.6 m di-
ameter piles between 40 and 100 MN/m and the 0.9 m di-
ameter piles between 100 and 400 MN/m.

Overall the mean predicted ratio of K,/K, was 1.27 and
varied between the extremes of 0.23 and 2.40. A careful anal-
ysis of the cases of poor prediction gave valuable insight on
the limitations of this new method. The LATWAK test is not
well suited at this time to test hollow pipe piles; the ovaliza-
tion of the circular cross-section during impact generates
waves not included in the theoretical solution. Good results
were obtained when testing pipe piles filled with concrete. The
LATWAK test requires a clean signal with a decay curve [Fig.
2(b)]; poor signals such as the one obtained on pile No. 11
[Fig. 9(b)] led to poor predictions; the velocity-time and force-
time signals should be checked immediately in the field until
satisfactory signals are obtained (Fig. 2). The LATWAK test
is not well suited at this time to test piles that extend high
above the ground surface (>1.5 m) because inertia forces are
generated which are not included in the theoretical solution.
Square concrete piles loaded laterally along a diagonal of their
cross section are difficult to test with LATWAK. Piles with
diameters larger than 0.6 m may require heavier hammers to
obtain quality signals.

It is considered that the comparison of K, with K, in Fig.
8 is encouraging considering that this is a new method. After
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removing from Fig. 8 the data points associated with the prob-
lems mentioned above, the scatter on Fig. 8 was reduced. Fur-
ther work including full scale testing is necessary however to
improve and better evaluate this comparison; further full scale
load tests should include a very precise definition by numerous
data points of the very beginning of the load deflection curves,
say 10 points between O to 2 mm.
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CONCLUSIONS

A new test called the LATWAK test has been developed to
obtain the lateral static stiffness of a pile. This process has
required the use of theory, considerable software development,
and a large number of large scale field tests. The test in the
field requires an instrumented hammer, a geophone and a data
acquisition/analysis computer. The cost of the equipment is
about $10,000. The test consists of attaching a horizontal geo-
phone on the side of the pile near the ground surface, hitting
the pile with the instrumented hammer on the opposite side,
and recording the force-time and velocity-time signals. The
data analysis consists of using the custom made computer pro-
gram LATWAK to obtain a prediction of the static pile-soil
stiffness K. This stiffness corresponds to horizontal pile head
displacements of the order to 0.5 to 0.05 mm and can be used
for quality control, defect detection, or small amplitude vibra-
tion problems among other applications.

The theory required to make this prediction is presented. It
consists of the solution to the problem of a flexural wave prop-
agating in an elastic pile of finite length surrounded by a linear
homogeneous soil. This solution gives the theoretical mobility
curve. A theoretical and automatic matching process is devel-
oped based on the system identification technique. It allows
extraction of the element stiffness k from the LATWAK data.
Solving the problem of a pile of finite length subjected to a
static lateral load in a linear homogeneous soil allows linkage
of the global pile soil stiffness K at the pile top to the element
stiffness k. This entire process is automated thanks to a cus-
tom-designed computer program called LATWAK.

A 20 full-scale pile load test program was performed to
allow comparison of the lateral stiffness K, predicted by the
LATWAK tests to the lateral stiffness K, measured in the static
lateral load tests. The results are encouraging and show that
the method at this time gives the best results when quality
signals are obtained, when the piles are not hollow, when the
piles do not extend much above the ground surface, and when
the piles have a diameter of 0.6 m or less. Further limitations
of the method are due to the assumptions made in the theory,
namely constant soil stiffness with depth and linear soil be-
havior.
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